Published October 19, 2015
| Version v1
Conference paper
3D Tessellation of Plant Tissue A dual optimization approach to cell-level meristem reconstruction from microscopy images
Contributors
Others:
- Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Description
The goal of this paper is the reconstruction of topo-logically accurate 3-dimensional triangular meshes representing a complex, multi-layered plant tissue structure. Based on time sequences of meristem images of the model plant Arabidopsis thaliana, displaying fluorescence markers on either cell membranes or cell nuclei under confocal laser scanning microscopy, we aim at obtaining faithful reconstructions of all the cell walls in the tissue. In the presented method, the problem is tackled under the angle of topology, and the shape of the cells is seen as the dual geometry of a 3-d simplicial complex accounting for their adjacency relationships. We present a method for optimizing such complexes using an energy minimization process, designed to make them fit to the actual adjacencies in the tissue. The resulting dual meshes constitute a light discrete representation of the cell surfaces that enables fast visualization, and quantitative analysis, and allows in silico physical and mechanical simulations on real-world data.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01246580
- URN
- urn:oai:HAL:hal-01246580v1
Origin repository
- Origin repository
- UNICA