Published 2013 | Version v1
Journal article

PROARTIS: Probabilistically Analyzable Real-Time System

Others:
Spanish National Research Council (CSIC)
Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS)
Dipartimento di Matematica Pura e Applicata [Padova] ; Università degli Studi di Padova = University of Padua (Unipd)
Real time and interoperability (TRIO) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Models and methods of analysis and optimization for systems with real-time and embedding constraints (AOSTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Airbus [France]
Rapita Systems Ltd [York]
Universitat Politècnica de Catalunya [Barcelona] (UPC)
European Project: 249100,EC:FP7:ICT,FP7-ICT-2009-4,PROARTIS(2010)

Description

Static timing analysis is the state-of-the-art practice of ascertaining the timing behavior of current-generation real-time embedded systems. The adoption of more complex hardware to respond to the increasing demand for computing power in next-generation systems exacerbates some of the limitations of static timing analysis. In particular, the effort of acquiring (1) detailed information on the hardware to develop an accurate model of its execution latency as well as (2) knowledge of the timing behavior of the program in the presence of varying hardware conditions, such as those dependent on the history of previously executed instructions. We call these problems the timing analysis walls. In this vision-statement article, we present probabilistic timing analysis, a novel approach to the analysis of the timing behavior of next-generation real-time embedded systems. We show how probabilistic timing analysis attacks the timing analysis walls; we then illustrate the mathematical foundations on which this method is based and the challenges we face in the effort of efficiently implementing it. We also present experimental evidence that shows how probabilistic timing analysis reduces the extent of knowledge about the execution platform required to produce probabilistically accurate WCET estimations.

Abstract

International audience

Additional details

Created:
December 2, 2022
Modified:
November 30, 2023