Published June 12, 2017 | Version v1
Conference paper

Discontinuous Galerkin Method for TTI Eikonal Equation

Others:
Institut des Sciences de la Terre (ISTerre) ; Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Département de Mathematiques [Sfax] ; Faculté des Sciences de Sfax ; Université de Sfax - University of Sfax-Université de Sfax - University of Sfax
Centre de Géosciences (GEOSCIENCES) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Equations aux Dérivées Partielles (EDP ) ; Laboratoire Jean Kuntzmann (LJK ) ; Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])

Description

A new formulation for solving the Eikonal equation is investigated using a time-dependent Hamilton-Jacobi equation. A discontinuous Galerkin (DG) finite element method is proposed for direct reconstruction of the traveltime field as the final stationary solution. Both isotropic and tilted transversely isotropic (TTI) implementations are performed in heterogeneous media with stable and accurate results as long as we honor the high-frequency approximation. We introduce outgoing conditions at edges able to handle complex topography and we deal with singularity at the source through the additive factorization. Expected convergence behavior regarding element interpolation is observed when considering factorization. Comparison between DG and finite difference solutions in the complex BP TTI model with unstructured and structured meshes illustrates the highly accurate traveltime estimation of this DG approach, pointing out perspectives for integrating this accurate local Eikonal solver into efficient methods for getting the stationary solution, such as fast sweeping methods.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
December 1, 2023