Explainable prediction of Qcodes for NOTAMs using column generation
- Others:
- École Polytechnique de Montréal (EPM)
- CortAIx, Thalès
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- This work is supported by the DEEL Project CRDPJ 537462-18 funded by the National Science and Engineering Research Council of Canada (NSERC) and the Consortium for Research and Innovation in Aerospace in Québec (CRIAQ), together with its industrial partners Thales Canada inc, Bell Textron Canada Limited, CAE inc and Bombardier inc.
Description
A NOtice To AirMen (NOTAM) contains important flight route related information. To search and filter them, NOTAMs are grouped into categories called QCodes. In this paper, we develop a tool to predict, with some explanations, a Qcode for a NOTAM. We present a way to extend the interpretable binary classification usingcolumn generation proposed in Dash, Gunluk, and Wei (2018) to a multiclass text classification method. We describe the techniques used to tackle the issues related to one-vs-rest classification, such as multiple outputs and class imbalances. Furthermore, we introduce some heuristics, including the use of a CP-SAT solver for thesubproblems, to reduce the training time. Finally, we show that our approach compares favorably with state-of-the-art machine learning algorithms like Linear SVM and small neural networks while adding the needed interpretability component.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04255231
- URN
- urn:oai:HAL:hal-04255231v1
- Origin repository
- UNICA