Published January 18, 2021
| Version v1
Conference paper
Identification of Spatiotemporal Dispersion Electrograms in Persistent Atrial Fibrillation Ablation Using Maximal Voltage Absolute Values
Contributors
Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre Hospitalier Universitaire de Nice (CHU Nice)
- Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- IDEX-UNIV-COTEDAZUR
- Chair "IAblation" from 3IA Côte d'Azur (V. Zarzoso)
- IDEX-UNIV-COTEDAZUR
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Atrial fibrillation (AF) is a sustained arrhythmia whose mechanisms are still largely unknown. A recent patient-tailored AF ablation therapy is based on the use of a multipolar mapping catheter called PentaRay. This new protocol targets areas of spatiotemporal dispersion (STD) in the atria as potentialAF drivers. However, interventional cardiologists localize STD sites visually through the observation of intracardiac electrograms (EGMs). The present work aims to automatically characterize ablation sites in STD-based ablation. Recent research suggests that the distribution of the time series of maximal voltage absolute values at any of the PentaRay bipoles (VAVp) is affected by the STD pattern. Motivated by this finding, we consider VAVp as a key feature for STD identification. To our knowledge, this work applies for the first time statistical analysis and ML tools to automatically identify STD areas based on VAVp time series. Experiments are first conducted on synthetic data to quantify the effect of STD pattern characteristics (number of delayed eads, fractionation degree and number of fractionated leads) on engineered features of the VAVp time series like kurtosis, showing promising results. Then these features are tested on a real dataset of 23082 multichannel EGM signals from 16 different persistent AF patients. Statistical features like kurtosis and distribution (histograms) of VAVp values are extracted and fed to supervised machine learning (ML) classifiers, but no significant dissimilarity is obtained between the two categories. The classification of raw VAVp time series is finally conducted using ML tools like a shallow convolutional neural network combined with cross validation and data augmentation, reaching AUC values of 96%.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02756806
- URN
- urn:oai:HAL:hal-02756806v2
Origin repository
- Origin repository
- UNICA