Published October 2020
| Version v1
Journal article
A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos
Contributors
Others:
- Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
NASA's Double Asteroid Redirection Test (DART) is designed to be the first demonstration of a kinetic impactor for planetary defense against a small-body impact hazard. The target is the smaller component of the binary asteroid 65803 Didymos. We have conducted high-fidelity rigid full two-body simulations of the mutual dynamics of this system in a broad benchmarking exercise to find the best simulation methodologies, and to understand the sensitivity of the system to initial conditions. Due to the non-spherical shapes of the components and their close proximity, the components cannot be treated as point masses and so the dynamics differ significantly from a simple Keplerian orbit, necessitating the use of numerical simulations to fully capture the system's dynamics. We find that the orbit phase (angular position or true anomaly) of the secondary is highly sensitive to the initial rotation phase of the primary, making prediction of the secondary's location from numerical simulation challenging. Finally, we show that the DART impact should induce significant free and forced librations on the secondary. If this libration can be measured by ESA's recently approved follow-up spacecraft, Hera, it may be possible to constrain properties of the secondary's interior structure.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02986184
- URN
- urn:oai:HAL:hal-02986184v1
Origin repository
- Origin repository
- UNICA