Published January 2020
| Version v1
Journal article
Separation of Alpha-Stable Random Vectors
Contributors
Others:
- Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH) ; Centre Inria de l'Université de Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Traitement et Communication de l'Information (LTCI) ; Institut Mines-Télécom [Paris] (IMT)-Télécom Paris ; Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)
- Signal, Statistique et Apprentissage (S2A) ; Laboratoire Traitement et Communication de l'Information (LTCI) ; Institut Mines-Télécom [Paris] (IMT)-Télécom Paris ; Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris ; Institut Mines-Télécom [Paris] (IMT)-Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)
- Scientific Data Management (ZENITH) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- This work was partly supported by the research programmes KAMoulox (ANR-15-CE38-0003-01) and EDiSon3D (ANR-13-CORD-0008-01) funded by ANR, the French State agency for research.
- ANR-15-CE38-0003,KAMoulox,Démixage en ligne de larges archives sonores(2015)
Description
Source separation aims at decomposing a vector into additive components. This is often done by first estimating source parameters before feeding them into a filtering method, often based on ratios of covariances. The whole pipeline is traditionally rooted in some probabilistic framework providing both the likelihood for parameter estimation and the separation method. While Gaussians are ubiquitous for this purpose, many studies showed the benefit of heavy-tailed models for estimation. However, there is no counterpart filtering method to date exploiting such formalism, so that related studies revert to covariance-based filtering after estimation is finished. Here, we introduce a new multivariate separation technique, that fully exploits the flexibility of α-stable heavy-tailed distributions. We show how a spatial representation can be exploited, which decomposes the observation as an infinite sum of contributions originating from all directions. Two methods for separation are derived. The first one is non-linear and similar to a beamforming technique, while the second one is linear, but minimizes a covariation criterion, which is the counterpart of the covariance for α-stable vectors. We evaluate the proposed techniques in a large number of challenging and adverse situations on synthetic experiments, demonstrating their performance for the extraction of signals from strong interferences.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-02433213
- URN
- urn:oai:HAL:hal-02433213v1
Origin repository
- Origin repository
- UNICA