Direct shape optimization through deep reinforcement learning
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- University of Oslo (UiO)
- University of Cambridge [UK] (CAM)
- Centre de Mise en Forme des Matériaux (CEMEF) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Analyse, Topologie, Probabilités (LATP) ; Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
Description
Deep Reinforcement Learning (DRL) has recently spread into a range of domains within physics and engineering, with multiple remarkable achievements. Still, much remains to be explored before the capabilities of these methods are well understood. In this paper, we present the first application of DRL to direct shape optimization. We show that, given adequate reward, an artificial neural network trained through DRL is able to generate optimal shapes on its own, without any prior knowledge and in a constrained time. While we choose here to apply this methodology to aerodynamics, the optimization process itself is agnostic to details of the use case, and thus our work paves the way to new generic shape optimization strategies both in fluid mechanics, and more generally in any domain where a relevant reward function can be defined.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02428728
- URN
- urn:oai:HAL:hal-02428728v1
- Origin repository
- UNICA