Published 2012
| Version v1
Book section
Time-Frequency Learning Machines For NonStationarity Detection Using Surrogates
Contributors
Others:
- Laboratoire de Physique de l'ENS Lyon (Phys-ENS) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Michael J. Way
- Jeffrey D. Scargle
- Kamal M. Ali
- Ashok N. Srivstava
- ANR-07-BLAN-0191,StaRAC,Stationnarité relative et approches connexes(2007)
Description
Testing stationarity is an important issue in signal analysis and classification. Recently, time-frequency analysis has been investigated to detect the nonstationarity of a given signal, by constructiing from it a set of surrogate, stationarized signals. Time-frequency features are extracted to test the stationarity. Our paper is a further contribution by exploring the powerful framework of time-frequency learning machines. We show that one can relate stationarity to the structure of surrogates spectrograms and detect nonstationarity using a one-class classification approach. The proposed method does not suffer from any prior knowledge for extracting features, since it uses the entire time-frequency information. Using spherical multidimensional scaling technique, we illustrate the relevance of the proposed approach with simulation results.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal-ens-lyon.archives-ouvertes.fr/ensl-02967833
- URN
- urn:oai:HAL:ensl-02967833v1
Origin repository
- Origin repository
- UNICA