Published August 24, 2021
| Version v1
Book section
On the dichromatic number of surfaces
- Others:
- Département d'informatique - ENS Paris (DI-ENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire d'Informatique et Systèmes (LIS) ; Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- ANR-16-CE40-0009,GATO,Graphes, Algorithmes et TOpologie(2016)
Description
In this paper, we give bounds on the dichromatic number − → χ (Σ) of a surface Σ, which is the maximum dichromatic number of an oriented graph embeddable on Σ. We determine the asymptotic behaviour of − → χ (Σ) by showing that there exist constants a1 and a2 such that, a1 √ −c log(−c) ≤ − → χ (Σ) ≤ a2 √ −c log(−c) for every surface Σ with Euler characteristic c ≤ −2. We then give more explicit bounds for some surfaces with high Euler characteristic. In particular, we show that the dichromatic numbers of the projective plane N1, the Klein bottle N2, the torus S1, and Dyck's surface N3 are all equal to 3, and that the dichromatic numbers of the 5-torus S5 and the 10-cross surface N10 are equal to 4.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03424140
- URN
- urn:oai:HAL:hal-03424140v1
- Origin repository
- UNICA