Published June 14, 2013
| Version v1
Journal article
On the Fiedler value of large planar graphs
Contributors
Others:
- Applied Mathematics IV Department ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Universidad de Alcalá - University of Alcalá (UAH)
Description
The Fiedler value λ_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs G with n vertices, denoted by λ_2max, and we show the bounds 2+\Theta(1/n^2) \leq λ_2max \leq 2+O(1/n). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex-degree 3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ_2max for two more classes of graphs, those of bounded genus and K_h-minor-free graphs.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00923075
- URN
- urn:oai:HAL:hal-00923075v1
Origin repository
- Origin repository
- UNICA