Published September 24, 2012 | Version v1
Conference paper

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors

Others:
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe IMAGES-CREATIVE ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Centre de Recherche en Economie, Gestion, Modélisation et Informatique Appliquée (CEREGMIA) ; Université des Antilles et de la Guyane (UAG)
Sony Computer Science Laboratory Paris (SONY CSL-Paris) ; Sony France SA

Description

It is an admitted fact that mainstream boosting algorithms like AdaBoost do not perform well to estimate class conditional probabilities. In this paper, we analyze, in the light of this problem, a recent algorithm, unn, which leverages nearest neighbors while minimizing a convex loss. Our contribution is threefold. First, we show that there exists a subclass of surrogate losses, elsewhere called balanced, whose minimization brings simple and statistically efficient estimators for Bayes posteriors. Second, we show explicit convergence rates towards these estimators for \unn, for any such surrogate loss, under a Weak Learning Assumption which parallels that of classical boosting results. Third and last, we provide experiments and comparisons on synthetic and real datasets, including the challenging SUN computer vision database. Results clearly display that boosting nearest neighbors may provide highly accurate estimators, sometimes more than a hundred times more accurate than those of other contenders like support vector machines.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023