Published November 25, 2024
| Version v1
Book section
Causality: fundamental principles and tools
Contributors
Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Côte d'Azur (UniCA)
- Département de Mathématiques - EPFL ; Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Méthodes computationnelles et mathématiques pour comprendre la société et la santé à partir de données (SODA) ; Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
The goal of this chapter is to provide a gentle introduction to Causal Learning (CL), and motivation for its application to medical image analysis, seeking for more robustness against data and domain drifts, and a reliable tool to answer conterfactuals questions and get improved interpretability. The probabilistic formalism at the basis of CL will be introduced, along with basic definitions and assumptions. A number of classical methods to perform causal data analysis (both to establish the causal data generating structure, and to intervene on it) will be illustrated, using simple synthetic datasets. Scaling up to high dimensional and complex data such as medical images is not trivial, and requires the combination of classical CL and modern Deep/Machine Learning techniques: this topic will be further developed in Chapter 17.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04831368
- URN
- urn:oai:HAL:hal-04831368v1
Origin repository
- Origin repository
- UNICA