Published June 5, 2015
| Version v1
Book section
Dynamics of Nonautonomous Chemostat Models
Contributors
Others:
- Departamento de Ecuaciones Differenciales y Analysis numérico [Sevilla] (EDAN) ; Facultad de Matemáticas
- Auburn University (AU)
- School of Mathematics and Statistics [Wuhan] ; Wuhan University [China]
- University of Kaiserslautern (Department of Mathematics) ; University of Kaiserslautern (Department of Mathematics) ; University of Kaiserslautern (Department of Mathematics)-University of Kaiserslautern (Department of Mathematics)
- Modelling and Optimisation of the Dynamics of Ecosystems with MICro-organisme (MODEMIC) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Sadovnichiy, Viktor A.
- Zgurovsky, Mikhail Z
Description
Chemostat models have a long history in the biological sciences as well as in biomathematics. Hitherto most investigations have focused on autonomous systems, that is, with constant parameters, inputs, and outputs. In many realistic situations these quantities can vary in time, either deterministically (e.g., periodically) or randomly. They are then nonautonomous dynamical systems for which the usual concepts of autonomous systems do not apply or are too restrictive. The newly developing theory of nonautonomous dynamical systems provides the necessary concepts, in particular that of a nonautonomous pullback attractor. These will be used here to analyze the dynamical behavior of nonautonomous chemostat models with or without wall growth, time-dependent delays, variable inputs and outputs. The possibility of overyielding in nonautonomous chemostats will also be discussed.
Abstract
hal-01162471Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01162471
- URN
- urn:oai:HAL:hal-01162471v1
Origin repository
- Origin repository
- UNICA