Published October 22, 2020 | Version v1
Conference paper

Identifying a reliable radiomic signature from scarce data: illustration for 18F-FDOPA PET images in glioblastoma patients

Others:
Laboratoire d'Imagerie Translationnelle en Oncologie (LITO ) ; Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)
E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UCA)
Département de Médecine Nucléaire [Nice] (CHU-Nice) ; Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UCA)-UNICANCER-Université Côte d'Azur (UCA)-Centre Hospitalier Universitaire de Nice (CHU Nice)
Transporteurs et Imagerie, Radiothérapie en Oncologie et Mécanismes biologiques des Altérations du Tissu Osseux (TIRO-MATOs - UMR E4320) ; Service Hospitalier Frédéric Joliot (SHFJ) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-UMR E4320 (TIRO-MATOs) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)
Service de Neurologie [CHU Nice] ; Hôpital Pasteur [Nice] (CHU)-Centre Hospitalier Universitaire de Nice (CHU Nice)
Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)

Description

Aim/Introduction: The design and validation of a reliable radiomic signature is challenging when few patients are available because the disease is rare, the imaging protocol is specific and/or the classes are unbalanced. In this context, we propose an approach to identify a signature and estimate its reliability. Materials and Methods: 84 patients with a clinical and MRI suspicion of recurrent glioblastoma were retrospectively included. Each patient underwent a 18F-FDOPA PET-CT scan. For each patient, the suspicious lesion was segmented and 49 radiomic features were calculated using LIFEx [1]. Our goal was to distinguish between tumor recurrence and radiation-induced necrosis as confirmed on pathological data, or on a 3-month clinical/imaging follow-up. A screening procedure was developed to identify a signature using leave-one-out (LOO) cross-validation. The procedure involved: 1) selection of all features with a p-value of univariate Wilcoxon test lower than alpha varying from 0.005 to 0.10 for (N-1) learning patients, 2) based on these features, selection of only one feature among correlated features using a Pearson correlation cutoff R varying from 0.95 to 0.50, 3) building of a radiomic signature involving the resulting features using a linear discriminant analysis, 4) test of the model on the Nth patient, 5) characterization of the model performance using the Youden Index (Y=sensitivity+specificity-1). The final model selection was based on the consistency of Y values as a function of alpha and R, on the consistency of selected features between the different models, and favored models involving a low number of features. To test the reliability of the selected signature, we repeated the process by excluding one patient using a jackknife procedure (ie, 84 LOO of 83 patients each). We compared the results with those obtained with the same alpha and R when randomly assigning a label to each patient (sham task). Results: 61 patients had tumor recurrence and 23 had radiation necrosis. Visual interpretation yielded Y equal to 0.35 (Lizarraga scale, Se=100%, Sp=35%). Using LOO, 10/28 radiomic models had Y>0.35. The largest Y (Y=0.49, Se=62%, Sp=87%) were obtained with 4 features on average, reflecting the volume, sphericity and heterogeneity (GLCM_Correlation, GLCM_Contrast) of the lesion uptake. Using the jackknife procedure, Y was 0.47±0.06 (range: [0.32;0.56]), significantly higher (Wilcoxon p < 0.05) than for the sham task (Y=0.06±0.18, range: [-0.52;0.47]). Conclusion: The proposed systematic screening procedure enabled the identification of a parsimonious radiomic signature from scarce data. References: [1] Nioche et al. Cancer Res 2018.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 27, 2023