Published April 25, 2023 | Version v1
Conference paper

High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent

Contributors

Others:

Description

In this paper, we study differentially private empirical risk minimization (DP-ERM). It has been shown that the worst-case utility of DP-ERM reduces polynomially as the dimension increases. This is a major obstacle to privately learning large machine learning models. In high dimension, it is common for some model's parameters to carry more information than others. To exploit this, we propose a differentially private greedy coordinate descent (DP-GCD) algorithm. At each iteration, DP-GCD privately performs a coordinate-wise gradient step along the gradients' (approximately) greatest entry. We show theoretically that DP-GCD can achieve a logarithmic dependence on the dimension for a wide range of problems by naturally exploiting their structural properties (such as quasi-sparse solutions). We illustrate this behavior numerically, both on synthetic and real datasets.

Abstract

International audience

Additional details

Identifiers

URL
https://inria.hal.science/hal-03714465
URN
urn:oai:HAL:hal-03714465v3

Origin repository

Origin repository
UNICA