Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission
- Others:
- Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Charles Coulomb (L2C) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Description
In this work, InGaN/GaN Multi-Quantum Wells (MQWs) with strain compensating AlGaN interlayers grown by metalorganic vapour phase epitaxy have been investigated by high resolution X-ray diffraction, transmission electron microscopy and photoluminescence (PL). For different AlGaN strain compensating layer thicknesses varying from 0 to 10.6 nm, a detailed X-ray diffraction analysis shows that the MQW stack become completely strained on GaN along a and c. The compensation is full from an AlGaN layer thickness of 5.2 nm, and this does not change up to the largest one that has been investigated. In this instance, the AlGaN was grown at the same temperature as the GaN barrier, on top of a protective 3 nm GaN. It is found that the crystalline quality of the system is progressively degraded when the thickness of the AlGaN interlayer is increased through strain concentrated domains which randomly form inside the 3 nm GaN low temperature layer. These domains systematically contribute to a local decrease of the QW thickness and most probably to an efficient localisation of carriers. Despite these defects, the PL is highly improved towards the red wavelengths and compares with the reports on ultrathin AlGaN layers where this has been correlated to the improvement of the crystalline quality although with less strain compensation.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03047502
- URN
- urn:oai:HAL:hal-03047502v1
- Origin repository
- UNICA