Published August 1, 2010
| Version v1
Report
Parametric polynomial minimal surfaces of arbitrary degree
Creators
Contributors
Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Department of Mathematics [Hangzhou] ; Zhejiang University
Description
Weierstrass representation is a classical parameterization of minimal surfaces. However, two functions should be specified to construct the parametric form in Weierestrass representation. In this paper, we propose an explicit parametric form for a class of parametric polynomial minimal surfaces of arbitrary degree. It includes the classical Enneper surface for cubic case. The proposed minimal surfaces also have some interesting properties such as symmetry, containing straight lines and self-intersections. According to the shape properties, the proposed minimal surface can be classified into four categories with respect to $n=4k-1$ $n=4k+1$, $n=4k$ and $n=4k+2$. The explicit parametric form of corresponding conjugate minimal surfaces is given and the isometric deformation is also implemented.
Additional details
Identifiers
- URL
- https://hal.inria.fr/inria-00507790
- URN
- urn:oai:HAL:inria-00507790v1
Origin repository
- Origin repository
- UNICA