Published December 8, 2017
| Version v1
Journal article
Disjoint cycles of different lengths in graphs and digraphs
Contributors
Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Modèles de calcul, Complexité, Combinatoire (MC2) ; Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Northwestern Polytechnical University [Xi'an] (NPU)
- Lycée Adam de Craponne
Description
In this paper, we study the question of finding a set of $k$ vertex-disjoint cycles (resp. directed cycles) of distinct lengths in a given graph (resp. digraph). In the context of undirected graphs, we prove that, for every $k \geq 1$, every graph with minimum degree at least $\frac{k^2+5k-2}{2}$ has~$k$ vertex-disjoint cycles of different lengths, where the degree bound is best possible. We also consider other cases such as when the graph is triangle-free, or the $k$ cycles are required to have different lengths modulo some value $r$. In the context of directed graphs, we consider a conjecture of Lichiardopol concerning the least minimum out-degree required for a digraph to have $k$ vertex-disjoint directed cycles of different lengths. We verify this conjecture for tournaments, and, by using the probabilistic method, for some regular digraphs and digraphs of small order.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01653334
- URN
- urn:oai:HAL:hal-01653334v1
Origin repository
- Origin repository
- UNICA