Published September 4, 2013
| Version v1
Conference paper
Extremum seeking via continuation techniques for optimizing biogas production in the chemostat
Contributors
Others:
- Modelling and Optimisation of the Dynamics of Ecosystems with MICro-organisme (MODEMIC) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS) ; University of Exeter
- Centre for Robotics and Neural Systems (CRNS) ; Plymouth University
- SIgnals and SYstems in PHysiology & Engineering (SISYPHE) ; Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
We consider the chemostat model with the substrate concentration as the single measurement. We propose a control strategy that drives the system at a steady state maximizing the gas production without the knowledge of the specific growth rate. Our approach separates the extremum seeking problem from the feedback control problem such that each of the two subproblems can be solved with relatively simple algorithms. We are then free to choose any numerical optimization algorithm. We give a demonstration for two choices: one is based on slow-fast dynamics and numerical continuation, the other is a combination of golden-section and Newton iteration. The method copes with non-monotonic growth functions.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00787510
- URN
- urn:oai:HAL:hal-00787510v2
Origin repository
- Origin repository
- UNICA