Published June 7, 2011
| Version v1
Conference paper
Virtual Roots of a Real Polynomial and Fractional Derivatives
Creators
Contributors
Others:
- Mathematisches Institut [München] (LMU) ; Ludwig-Maximilians-Universität München (LMU)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Deutsch-Franz\"{o}sische-Hochschule École-Franco-Allemande.
- Leykin, A.
- European Project: 214584,EC:FP7:PEOPLE,FP7-PEOPLE-2007-1-1-ITN,SAGA(2008)
Description
After the works of Gonzales-Vega, Lombardi, Mahé,\cite{Lomb1} and Coste, Lajous, Lombardi, Roy \cite{Lomb2}, we consider the virtual roots of a univariate polynomial $f$ with real coefficients. Using fractional derivatives, we associate to $f$ a bivariate polynomial $P_f(x,t)$ depending on the choice of an origin $a$, then two type of plan curves we call the FDcurve and stem of $f$. We show, in the generic case, how to locate the virtual roots of $f$ on the Budan table and on each of these curves. The paper is illustrated with examples and pictures computed with the computer algebra system Maple.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00559950
- URN
- urn:oai:HAL:hal-00559950v1
Origin repository
- Origin repository
- UNICA