Published November 5, 2021
| Version v1
Journal article
Strichartz estimates for the wave equation on a 2d model convex domain
Contributors
Others:
- Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- European Project: 757996,ANADEL
Description
We prove better Strichartz type estimates than expected from the (optimal) dispersion we obtained in our earlier work on a 2d convex model. This follows from taking full advantage of the space-time localization of caustics in the parametrix we obtain, despite their number increasing like the inverse square root of the distance from the source to the boundary. As a consequence, we improve known Strichartz estimates for the wave equation. Several improvements on our previous parametrix construction are obtained along the way and are of independent interest for further applications.
Abstract
40 pagesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02938058
- URN
- urn:oai:HAL:hal-02938058v1
Origin repository
- Origin repository
- UNICA