Published 2011 | Version v1
Journal article

Graph Classes (Dis)satisfying the Zagreb Indices Inequality

Others:
Institute of Mathematics and Physics [Skopje] ; Ss. Cyril and Methodius University in Skopje (UKIM)
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Faculty of Mathematics and Physics [Ljubljana] (FMF) ; University of Ljubljana

Description

{Recently Hansen and Vukicevic proved that the inequality $M_1/n \leq M_2/m$, where $M_1$ and $M_2$ are the first and second Zagreb indices, holds for chemical graphs, and Vukicevic and Graovac proved that this also holds for trees. In both works is given a distinct counterexample for which this inequality is false in general. Here, we present some classes of graphs with prescribed degrees, that satisfy $M_1/n \leq M_2/m$: Namely every graph $G$ whose degrees of vertices are in the interval $[c; c + \sqrt c]$ for some integer $c$ satisies this inequality. In addition, we prove that for any $\Delta \geq 5$, there is an infinite family of graphs of maximum degree $\Delta$ such that the inequality is false. Moreover, an alternative and slightly shorter proof for trees is presented, as well\ as for unicyclic graphs.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 29, 2023