Published 2014 | Version v1
Journal article

Eulerian and Hamiltonian dicycles in directed hypergraphs

Others:
Universidade Federal do Ceará = Federal University of Ceará (UFC)
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

In this article, we generalize the concepts of Eulerian and Hamiltonian digraphs to directed hypergraphs. A dihypergraph H is a pair (V(H), E(H)), where V(H) is a non-empty set of elements, called vertices, and E(H) is a collection of ordered pairs of subsets of V(H), called hyperarcs. It is Eulerian (resp. Hamiltonian) if there is a dicycle containing each hyperarc (resp. each vertex) exactly once. We first present some properties of Eulerian and Hamiltonian dihypergraphs. For example, we show that deciding whether a dihypergraph is Eulerian is an NP-complete problem. We also study when iterated line dihypergraphs are Eulerian and Hamiltonian. Finally, we study when the generalized de Bruijn dihypergraphs are Eulerian and Hamiltonian. In particular, we determine when they contain a complete Berge dicycle, i.e. an Eulerian and Hamiltonian dicycle.

Abstract

International audience

Additional details

Created:
March 25, 2023
Modified:
November 29, 2023