Chemical characterization of the inner Galactic bulge:North–South symmetry
- Others:
- Lund Observatory ; Lund University [Lund]
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Division of Energy and Mechanical Engineering Department of Technology and Built Environment ; University of Gsyle
- Uppsala University
- Department of Physics and Astronomy [UCLA, Los Angeles] ; University of California [Los Angeles] (UCLA) ; University of California (UC)-University of California (UC)
- Galaxies, Etoiles, Physique, Instrumentation (GEPI) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Description
While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| < 2°) remains poorly studied, due to heavy interstellar absorption and photometric crowding. We have carried out a high-resolution IR spectroscopic study of 72 M giants in the inner bulge using the CRIRES (ESO/VLT) facility. Our spectra cover the wavelength range of 2.0818-2.1444 μ m with the resolution of R ˜ 50 000 and have signal-to-noise ratio of 50:100. Our stars are located along the bulge minor axis at l = 0°, b= ±0°, ±1°, ±2°, and +3°. Our sample was analysed in a homogeneous way using the most current K-band line list. We clearly detect a bimodal metallicity distribution function with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex and no stars with [Fe/H] > +0.6 dex. The Galactic Centre field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances that are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields; hence, the evidence is consistent with symmetry in chemistry between North and South.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02280918
- URN
- urn:oai:HAL:hal-02280918v1
- Origin repository
- UNICA