Published 2022 | Version v1
Journal article

Human fall detection using passive infrared sensors with low resolution: A systematic review

Others:
Mobilités : Vieillissement, Pathologie, Santé (COMETE) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre de Recherche sur l'Autonomie et la Longévité [CHU Angers] (CeRAL [CHU Angers])
GIP Cyceron (Cyceron) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CHU Caen ; Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Centre Hospitalier Universitaire de Nice (CHU Nice)
Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université de Toulon (UTLN)-Université Côte d'Azur (UCA)
University of Western Ontario (UWO)
Laboratoire de Psychologie des Pays de la Loire (LPPL) ; Université d'Angers (UA)-Nantes Université - UFR Lettres et Langages (Nantes Univ - UFR LL) ; Nantes Université - pôle Humanités ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
Cognition Behaviour Technology (CobTek) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre Hospitalier Universitaire de Nice (CHU Nice)-Institut Claude Pompidou [Nice] (ICP - Nice)-Université Côte d'Azur (UCA)

Description

Systems using passive infrared sensors with a low resolution were recently proposed to answer the dilemma effectiveness–ethical considerations for human fall detection by Information and CommunicationTechnologies (ICTs) in older adults. How effective is this type of system? We performed a systematic review to identify studies that investigated the metrological qualities of passive infrared sensors with a maximum resolution of 16×16 pixels to identify falls. The search was conducted on PubMed, ScienceDirect, SpringerLink, IEEE Xplore Digital Library, and MDPI until November 26–28, 2020. We focused on studies testing only these types of sensor. Thirteen articles were "conference papers", five were "original articles" and one was a found in arXiv.org (an open access repository of scientific research). Since four authors "duplicated" their study in two different journals, our review finally analyzed 15 studies. The studies were very heterogeneous with regard to experimental procedures and detection methods, which made it difficult to draw formal conclusions. All studies tested their systems in controlled conditions, mostly in empty rooms. Except for two studies, the overall performance reported for the detection of falls exceeded 85–90% of accuracy, precision, sensitivity or specificity. Systems using two or more sensors and particular detection methods (eg, 3D CNN, CNN with 10-fold cross-validation, LSTM with CNN, LSTM and Voting algorithms) seemed to give the highest levels of performance (> 90%). Future studies should test more this type of system in real-life conditions.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 27, 2023