Published October 15, 2021
| Version v1
Journal article
On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge
Creators
- de Luca, Alberto
- Ianus, Andrada
- Leemans, Alexander
- Palombo, Marco
- Shemesh, Noam
- Zhang, Hui
- Alexander, Daniel
- Nilsson, Markus
- Froeling, Martijn
- Biessels, Geert-Jan
- Zucchelli, Mauro
- Frigo, Matteo
- Albay, Enes
- Sedlar, Sara
- Alimi, Abib
- Deslauriers-Gauthier, Samuel
- Deriche, Rachid
- Fick, Rutger
- Afzali, Maryam
- Pieciak, Tomasz
- Bogusz, Fabian
- Aja-Fernández, Santiago
- Özarslan, Evren
- Jones, Derek
- Chen, Haoze
- Jin, Mingwu
- Zhang, Zhijie
- Wang, Fengxiang
- Nath, Vishwesh
- Parvathaneni, Prasanna
- Morez, Jan
- Sijbers, Jan
- Jeurissen, Ben
- Fadnavis, Shreyas
- Endres, Stefan
- Rokem, Ariel
- Garyfallidis, Eleftherios
- Sanchez, Irina
- Prchkovska, Vesna
- Rodrigues, Paulo
- Landman, Bennet
- Schilling, Kurt
Contributors
Others:
- Image sciences institute - University of Utrecht (ISI) ; University Medical Center [Utrecht]
- Utrecht Brain Center [UMC] ; University Medical Center [Utrecht]
- Champalimaud Centre for the Unknown [Lisbon]
- Laboratoire des Maladies Neurodégénératives - UMR 9199 (LMN) ; Service MIRCEN (MIRCEN) ; Université Paris-Saclay-Institut de Biologie François JACOB (JACOB) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Biologie François JACOB (JACOB) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Centre for Medical Image Computing (CMIC) ; University College of London [London] (UCL)
- Department of Forest Ecology and Management ; Swedish University of Agricultural Sciences (SLU)
- University Medical Center [Utrecht]
- Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Istanbul Technical University (ITÜ)
- TRIBVN Healthcare
- Cardiff University's Brain Research Imaging Centre [Cardiff] (CUBRIC) ; School of Psychology [Cardiff University] ; Cardiff University-Cardiff University
- Department of Automatics (AGH-UST) ; AGH University of Science and Technology [Krakow, PL] (AGH UST)
- Laboratorio de Procesado de Imagen [Valladolid] (LPI) ; Université de Valladolid
- Department of Biomedical Engineering [Linköping] ; Linköping University (LIU)
- Taiyuan University of Technology
- University of Texas at Arlington [Arlington]
- NVIDIA (NVIDIA)
- National Institutes of Health [Bethesda] (NIH)
- Vision Lab [Antwerp] ; University of Antwerp (UA)
- Indiana University [Bloomington] ; Indiana University System
- Institute of Materials Engineering [Bremen] (IWT ) ; University of Bremen
- University of Washington [Seattle]
- QMENTA Inc
- Vanderbilt University [Nashville]
- Vanderbilt University Medical Center [Nashville] ; Vanderbilt University [Nashville]
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- European Project: 694665,H2020 ERC,ERC-2015-AdG,CoBCoM(2016)
Description
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. Most predictions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-03172123
- URN
- urn:oai:HAL:hal-03172123v1
Origin repository
- Origin repository
- UNICA