Published January 2020
| Version v1
Journal article
Find Your Place: Simple Distributed Algorithms for Community Detection
Contributors
Others:
- Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] (UNIROMA)
- Università degli Studi di Roma Tor Vergata [Roma]
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- University of California [Berkeley] (UC Berkeley) ; University of California (UC)
Description
Given an underlying graph, we consider the following dynamics: Initially, each node locally chooses a value in {−1, 1}, uniformly at random and independently of other nodes. Then, in each consecutive round, every node updates its local value to the average of the values held by its neighbors, at the same time applying an elementary, local clustering rule that only depends on the current and the previous values held by the node. We prove that the process resulting from this dynamics produces a clustering that exactly or approximately (depending on the graph) reects the underlying cut in logarithmic time, under various graph models that exhibit a sparse balanced cut, including the stochastic block model. We also prove that a natural extension of this dynamics performs community detection on a regularized version of the stochastic block model with multiple communities. Rather surprisingly, our results provide rigorous evidence for the ability of an extremely simple and natural dynamics which is non-trivial even in a centralized setting.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03025943
- URN
- urn:oai:HAL:hal-03025943v1
Origin repository
- Origin repository
- UNICA