Published September 11, 2015
| Version v1
Conference paper
Network-Based UE Mobility Estimation in Mobile Networks
Contributors
Others:
- Dynamics of Geometric Networks (DYOGENE) ; Département d'informatique - ENS-PSL (DI-ENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Alcatel-Lucent Bell Labs France [Nozay] ; Alcatel-Lucent Bell Labs France
- Laboratory of Information, Network and Communication Sciences (LINCS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)
- Models for the performance analysis and the control of networks (MAESTRO) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Alcatel Lucent Bell Labs ; ALCATEL
Description
The coexistence of small cells and macro cells is a key feature of 4G and future networks. This heterogeneity, together with the increased mobility of user devices can generate a high handover frequency that could lead to unreasonably high call drop probability or poor user experience. By performing smart mobility management, the network can pro-actively adapt to the user and guarantee seamless and smooth cell transitions. In this work, we introduce an algorithm that takes as input sounding reference signal (SRS) measurements available at the base station (eNodeB in 4G systems) to estimate with a low computational requirement the mobility level of the user and with no modification at the user device/equipment (UE) side. The performance of the algorithm is showcased using realistic data and mobility traces. Results show that the classification of UE speed to three mobility classes can be achieved with accuracy of 87% for low mobility, 93% for medium mobility, and 94% for high mobility, respectively.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01414195
- URN
- urn:oai:HAL:hal-01414195v1
Origin repository
- Origin repository
- UNICA