Published 2023
| Version v1
Journal article
Reanalysis of neutron-capture elements in the benchmark r-rich star CS 31082-001
Contributors
Others:
- Galaxies, Etoiles, Physique, Instrumentation (GEPI) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
Description
We revisit the abundances of neutron-capture elements in the metal-poor ([Fe/H] = -2.9) r-process-rich halo star CS 31082-001. Partly motivated by the development of the new near-ultraviolet Cassegrain U-band Efficient Spectrograph for the Very Large Telescope, we compiled an expanded line list for heavy elements over the range 3000-4000 Å, including hyperfine structure for several elements. Combining archival near-ultraviolet spectra of CS 31082-001 from the Hubble Space Telescope and the Very Large Telescope, we investigate the abundances and nucleosynthesis of 35 heavy elements (Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Os, Ir, Pt, Pb, Bi, Th, and U). Our analysis includes the first abundance estimates for tin, holmium, and ytterbium from these data, and the first for lutetium from ground-based data, enabling a more complete view of the abundance pattern of this important reference star. In general, the r-process-dominated elements are as enhanced as those in the Sun, particularly for elements with Z ≥ 56 (Ba and heavier). However, the abundances for the lighter elements in our sample, from Ge to Sn (31 ≤ Z ≤ 50), do not scale with the solar abundance pattern. Moreover, the Ge abundance is deficient relative to solar, indicating that it is dominantly an iron-peak rather than neutron-capture element. Our results (or upper limits) on Sn, Pt, Au, Pb, and Bi all pose further questions, prompting further study on the origin and evolution of the known r-rich and actinide-rich, metal-poor stars.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://insu.hal.science/insu-04848720
- URN
- urn:oai:HAL:insu-04848720v1
Origin repository
- Origin repository
- UNICA