Published 2006
| Version v1
Report
Periodic solutions of piecewise affine gene network models: the case of a negative feedback loop
Creators
Contributors
Others:
- Modeling and control of renewable resources (COMORE) ; Laboratoire d'océanographie de Villefranche (LOV) ; Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- INRIA
Description
In this paper the existence and unicity of a stable periodic orbit is proven, for a class of piecewise affine differential equations in dimension 3 or more, provided their interaction structure is a negative feedback loop. It is also shown that the same systems converge toward a unique stable equilibrium point in dimension 2. This extends a theorem of Snoussi, which showed the existence of these orbits only. The considered class of equations is usually studied as a model of gene regulatory networks. It is not assumed that all decay rates are identical, which is biologically irrelevant, but has been done in the vast majority of previous studies. Our work relies on classical results about fixed points of monotone, concave operators acting on positive variables. Moreover, the used techniques are very likely to apply in more general contexts, opening directions for future work.
Additional details
Identifiers
- URL
- https://inria.hal.science/inria-00112195
- URN
- urn:oai:HAL:inria-00112195v5
Origin repository
- Origin repository
- UNICA