Published September 7, 2015
| Version v1
Conference paper
Optimizing Partition Trees for Multi-Object Segmentation with Shape Prior
Contributors
Others:
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Models of spatio-temporal structure for high-resolution image processing (AYIN) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Machine Learning and Optimisation (TAO) ; Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Spatio-Temporal Activity Recognition Systems (STARS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
A partition tree is a hierarchical representation of an image. Once constructed, it can be repeatedly processed to extract information. Multi-object multi-class image segmentation with shape priors is one of the tasks that can be efficiently done upon an available tree. The traditional construction approach is a greedy clustering based on color similarities. However, not considering higher level cues during the construction phase leads to trees that might not accurately represent the underlying objects in the scene, inducing mistakes in the later segmentation. We propose a method to optimize a tree based both on color distributions and shape priors. It consists in pruning and regrafting tree branches in order to minimize the energy of the best segmentation that can be extracted from the tree. Theoretical guarantees help reducing the search space and make the optimization efficient. Our experiments show that we succeed in incorporating shape information to restructure a tree, which in turn enables to extract from it good quality multi-object segmentations with shape priors.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01182776
- URN
- urn:oai:HAL:hal-01182776v1
Origin repository
- Origin repository
- UNICA