Published 2011 | Version v1
Journal article

A discrete time neural network model with spiking neurons II. Dynamics with noise

Description

We provide rigorous and exact results characterizing the statistics of spike trains in a network of leaky integrate and fire neurons, where time is discrete and where neurons are submitted to noise, without restriction on the synaptic weights. We show the existence and uniqueness of an invariant measure of Gibbs type and discuss its properties. We also discuss Markovian approximations and relate them to the approaches currently used in computational neuroscience to analyse experimental spike trains statistics.

Abstract

43 pages - Journal of Mathematical Biology, Volume 62, Issue 6 (2011), Page 863.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 29, 2023