Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis
- Creators
- Faye, Grégory
- Rankin, James
- Chossat, Pascal
- Others:
- Mathematical and Computational Neuroscience (NEUROMATHCOMP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 227747,EC:FP7:ERC,ERC-2008-AdG,NERVI(2009)
Description
The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize work- ing (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equiva- lent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking- type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00807366
- URN
- urn:oai:HAL:hal-00807366v1
- Origin repository
- UNICA