Published 2019
| Version v1
Journal article
Shallow packings, semialgebraic set systems, Macbeath regions, and polynomial partitioning
Contributors
Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Advanced Computing and Microelectronics Unit [Kolkata] (ACMU) ; Indian Statistical Institute [Kolkata]
- Laboratoire d'Informatique Gaspard-Monge (LIGM) ; Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
- ANR-14-CE25-0016,SAGA,Approximation geometrique structurelle pour l'algorithmique(2014)
Description
Given a set system (X,R) such that every pair of sets in R have large symmetric difference, the Shallow Packing Lemma gives an upper bound on |R| as a function of the shallow-cell complexity of R. In this paper, we first present a matching lower bound. Then we give our main theorem, an application of the Shallow Packing Lemma: given a semialgebraic set system (X,R) with shallow-cell complexity φ(⋅,⋅) and a parameter ϵ>0, there exists a collection, called an ϵ-Mnet, consisting of $O(1ϵφ(O(1ϵ),O(1)))$ subsets of X, each of size $Ω(ϵ|X|)$, such that any $R∈R$ with $|R|≥ϵ|X|$ contains at least one set in this collection. We observe that as an immediate corollary an alternate proof of the optimal ϵ-net bound follows.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02316975
- URN
- urn:oai:HAL:hal-02316975v1
Origin repository
- Origin repository
- UNICA