Published 2022 | Version v1
Journal article

Online hard example mining vs. fixed oversampling strategy for segmentation of new multiple sclerosis lesions from longitudinal FLAIR MRI

Others:
Algorithms, models and methods for images and signals of the human brain (ARAMIS) ; Sorbonne Université (SU)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut du Cerveau = Paris Brain Institute (ICM) ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
CHU Saint-Antoine [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche as part of the Investissements d'avenir program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), reference ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6), and reference number ANR-19-P3IA-0002 (3IA Côte d'Azur) and from ICM under the Big Brain Theory program (project IMAGIN-DEAL in MS-M). This work was supported by the Fondation pour la Recherche Médicale, Grant No. FDM202006011247 to Théodore Soulier and by the Fondation Sorbonne Université to MH.
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)

Description

Detecting new lesions is a key aspect of the radiological follow-up of patients with Multiple Sclerosis (MS), leading to eventual changes in their therapeutics. This paper presents our contribution to the MSSEG-2 MICCAI 2021 challenge. The challenge is focused on the segmentation of new MS lesions using two consecutive Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). In other words, considering longitudinal data composed of two time-points as input, the aim is to segment the lesional areas which are present only on the follow-up scan and not on the baseline. The backbone of our segmentation method is a 3D UNet applied patch-wise to the images and in which, in order to take into account both time-points, we simply concatenate the baseline and follow-up images along the channel axis before passing them to the 3D UNet. Our key methodological contribution is the use of online hard example mining to address the challenge of class imbalance. Indeed, there are very few voxels belonging to new lesions which makes training deep learning models difficult. Instead of using handcrafted priors like brain masks or multi-stage methods, we experiment with a novel modification to online hard example mining (OHEM), where we use an exponential moving average (i.e., its weights are updated with momentum) of the 3D UNet to mine hard examples. Using a moving average instead of the raw model should allow smoothing its predictions and allowing it to give more consistent feedback for OHEM

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 30, 2023