Published 2022 | Version v1
Book section

Detecting Stress Granules in Drosophila Neurons

Contributors

Others:

Description

Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates that dynamically and reversibly assemble in response to acute or chronic stress. They are thought to contribute to the adaptive stress response by storing translationally inactive mRNAs as well as signaling molecules. Recent work has shown that SG composition and properties depend on both stress and cell types, and that neurons exhibit a complex SG proteome and a strong vulnerability to mutations in SG proteins. Drosophila has emerged as a powerful genetically tractable organism where to study the physiological regulation and functions of SGs in normal and pathological contexts. In this chapter, we describe a protocol enabling quantitative analysis of SG properties in both larval and adult Drosophila CNS samples. In this protocol, fluorescently-tagged SGs are induced upon acute ex vivo stress or chronic in vivo stress, imaged at high-resolution via confocal microscopy and detected automatically, usinusing a dedicated software.

Abstract

International audience

Additional details

Identifiers

URL
https://hal.archives-ouvertes.fr/hal-03449962
URN
urn:oai:HAL:hal-03449962v1