On the (non-)existence of polynomial kernels for $P_l$-free edge modification problems
- Others:
- Méthodes et Algorithmes pour la Bioinformatique (MAB) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique Fondamentale d'Orléans (LIFO) ; Université d'Orléans (UO)-Ecole Nationale Supérieure d'Ingénieurs de Bourges
- ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009)
Description
Given a graph $G=(V,E)$ and a positive integer $k$, an edge modification problem for a graph property $\Pi$ consists in deciding whether there exists a set $F$ of pairs of $V$ of size at most $k$ such that the graph $H=(V,E\vartriangle F)$ satisfies the property $\Pi$. In the $\Pi$ \emph{edge-completion problem}, the set $F$ is constrained to be disjoint from $E$; in the $\Pi$ \emph{edge-deletion problem}, $F$ is a subset of $E$; no constraint is imposed on $F$ in the $\Pi$ \emph{edge-editing problem}. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size $k$ of the set $F$, it has been proved that if $\Pi$ is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three $\Pi$ edge-modification problems are FPT. It was then natural to ask whether these problems also admit a polynomial kernel. Using recent lower bound techniques, Kratsch and Wahlström answered this question negatively. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlström asked whether the result holds when the forbidden subgraphs are paths or cycles and pointed out that the problem is already open in the case of $P_4$-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that \textsc{Parameterized cograph edge-modification} problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for the \textsc{$P_l$-free edge-deletion} and the \textsc{$C_l$-free edge-deletion} problems for $l\geq 7$ and $l\geq 4$ respectively. Indeed, if they exist, then $NP \subseteq coNP / poly$.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00821612
- URN
- urn:oai:HAL:hal-00821612v1
- Origin repository
- UNICA