Published June 2, 2022
| Version v1
Publication
Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains
Contributors
Others:
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Côte d'Azur (UCA)
- Analyse, ingénierie et contrôle des micro-organismes (MICROCOSME) ; Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA)
- Montana State University (MSU)
Description
Abstract Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and flux phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative agreement between the predicted and observed variability in rates and yields. Moreover, over the entire range of wild-type and mutant strains considered, acetate overflow was predicted not to correlate with the growth rate, in agreement with the experimental data. These results support the hypothesis that resource allocation is a major explanatory factor of the observed variety of growth rates and growth yields across different bacterial strains. We also show, however, that differences in enzyme activity need to be taken into account to explain variations in protein abundance. Our model allows a fundamental understanding of quantitative bounds on rate and yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in metabolic engineering and synthetic biology.
Additional details
Identifiers
- URL
- https://hal.inria.fr/hal-03686335
- URN
- urn:oai:HAL:hal-03686335v1
Origin repository
- Origin repository
- UNICA