Model-driven online parameter adjustment for zero-attracting LMS
- Creators
- Jin, Danqi
- Jie, Chen
- Richard, Cédric
- Chen, Jingdong
- Others:
- Northwestern Polytechnical University [Xi'an] (NPU)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Zero-attracting least-mean-square (ZA-LMS) algorithm has been widely used for online sparse system identification. Similarly to most adaptive filtering algorithms and sparsity-inducing regularization techniques, ZA-LMS appears to face a trade-off between convergence speed and steady-state performance, and between sparsity level and estimation bias. It is therefore important, but not trivial, to optimally set the algorithm parameters. To address this issue, a variable-parameter ZA-LMS algorithm is proposed in this paper, based on a model of the stochastic transient behavior of the ZA-LMS. By minimizing the excess mean-square error (EMSE) at each iteration on the basis of a white input assumption, we obtain closedform expression of the step-size and regularization parameter. To improve the performance, we introduce the same strategy for the reweighted ZA-LMS (RZA-LMS). Simulation results illustrate the effectiveness of the proposed algorithms and highlight their performance through comparisons with state-of-the-art algorithms, in the case of white and correlated inputs.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03633949
- URN
- urn:oai:HAL:hal-03633949v1
- Origin repository
- UNICA