Published January 2014
| Version v1
Journal article
A Godunov-Type Solver for the Numerical Approximation of Gravitational Flows
Contributors
Others:
- Maison de la Simulation (MDLS) ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Control, Analysis and Simulations for TOkamak Research (CASTOR) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- IFP Energies nouvelles (IFPEN) ; IFP Energies nouvelles (IFPEN)
- Laboratoire de Mathématiques Jean Leray (LMJL) ; Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- This research was partially supported by the A.N.R. (Agence Nationale de la Recherche) through the projects SiNeRGHY (ANR-06-CIS6-009-01) and Anemos (ANR-11-MONU- 002)
Description
We present a new numerical method to approximate the solutions of an Euler-Poisson model, which is inherent to astrophysical flows where gravity plays an important role. We propose a discretization of gravity which ensures adequate coupling of the Poisson and Euler equations, paying particular attention to the gravity source term involved in the latter equations. In order to approximate this source term, its discretization is introduced into the approximate Riemann solver used for the Euler equations. A relaxation scheme is involved and its robustness is established. The method has been implemented in the software HERACLES and several numerical experiments involving gravitational flows for astrophysics highlight the scheme.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-00800474
- URN
- urn:oai:HAL:hal-00800474v1
Origin repository
- Origin repository
- UNICA