Numerical modeling and time-domain simulation of electromagnetic waves propagation in linear time-varying media
- Others:
- Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Lab-STICC_IMTA_MOM_PIM ; Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) ; École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)
- Département Micro-Ondes (IMT Atlantique - MO) ; IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Description
Two distinct aspects of linear media, namely, material dispersion and non-stationarity are usually misinterpreted. The dispersive nature of media is taken into account by applying time-domain filtering processes (such as the convolution process between electric field and electric susceptibility in Maxwell's equations). This implies that the impulse response of a dispersive material is time-dependent, although the material itself might be stationary. However, unlike dispersive media, time-varying media are non-stationary in nature; hence, Fourier analysis is not a valid approach in this case and more elaborate procedure is required. In this article, we present how non-stationarity and dispersion are treated in time-domain numerical schemes. Moreover, we show the case when both aspects are present in one material, such as time-varying plasma. Numerical results are verified by comparisons with analytical solutions.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01630708
- URN
- urn:oai:HAL:hal-01630708v1
- Origin repository
- UNICA