Published December 6, 2011
| Version v1
Publication
Study of different strategies for splitting variables in multidisciplinary topology optimization
- Others:
- Laboratoire d'Etudes et Recherche en Mathématiques Appliquées (LERMA) ; Ecole Mohammadia d'Ingénieurs (EMI)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Ecole Supérieure de Technologie d'Essaouira ; Université Cadi Ayyad [Marrakech] (UCA)
Description
This paper is devoted to the minimization of the thickness of an elastic structure under competitive loadings. We propose to determine an equilibrium thickness using game theory. We consider two loads exercised separately on two parts of the plate and we aim to optimize both compliances so we deal with a multiloading optimization problem. Firstly, the design variable is taken to be the thickness of the plate. In a second step, we assume that the thickness depends on two independent functions, that we consider as strategies. The multidisciplinary optimization problem is solved as a non-cooperative game and we determine a Nash equilibrium. Finally, some numerical simulations are presented and discuted.
Additional details
- URL
- https://hal.inria.fr/hal-00648701
- URN
- urn:oai:HAL:hal-00648701v1
- Origin repository
- UNICA