Optimization and uncertainty quantification of gradient index metasurfaces
- Others:
- Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- University of Glasgow
- Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig]
- Laboratoire de photonique et de nanostructures (LPN) ; Centre National de la Recherche Scientifique (CNRS)
- Institut Non Linéaire de Nice Sophia-Antipolis (INLN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
The design of intrinsically flat two-dimensional optical components, i.e., metasurfaces,generally requires an extensive parameter search to target the appropriate scattering propertiesof their constituting building blocks. Such design methodologies neglect important near-fieldinteraction effects, playing an essential role in limiting the device performance. Optimizationof transmission, phase-addressing and broadband performances of metasurfaces require newnumerical tools. Additionally, uncertainties and systematic fabrication errors should be analysed.These estimations, of critical importance in the case of large production of metaoptics components,are useful to further project their deployment in industrial applications. Here, we report on acomputational methodology to optimize metasurface designs. We complement this computationalmethodology by quantifying the impact of fabrication uncertainties on the experimentallycharacterized components. This analysis provides general perspectives on the overall metaopticsperformances, giving an idea of the expected average behavior of a large number of devices
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02433053
- URN
- urn:oai:HAL:hal-02433053v1
- Origin repository
- UNICA