Published July 6, 2016
| Version v1
Publication
Bifurcation from zero of a complete trajectory for non-autonomous logistic PDEs
- Others:
- Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
- Universidad de Sevilla. FQM314: Análisis Estocástico de Sistemas Diferenciales
- Universidad de Sevilla. FQM131: Ec.diferenciales,Simulacion Num.y Desarrollo Software
- Ministerio de Educación y Ciencia (MEC). España
- European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Description
In this paper we extend the well-known bifurcation theory for autonomous logistic equations to the non-autonomous equation ut − ∆u = λu − b(t)u 2 with b(t) ∈ [b0, B0], 0 < b0 < B0 < 2b0. In particular, we prove the existence of a unique uniformly bounded trajectory that bifurcates from zero as λ passes through the first eigenvalue of the Laplacian, which attracts all other trajectories. Although it is this relatively simple equation that we analyse in detail, other more involved models can be treated using similar techniques.
Abstract
Ministerio de Educación y Ciencia
Abstract
Fondo Europeo de Desarrollo Regional
Additional details
- URL
- https://idus.us.es/handle/11441/43225
- URN
- urn:oai:idus.us.es:11441/43225
- Origin repository
- USE