Published June 30, 2014
| Version v1
Conference paper
On the proper orientation number of bipartite graphs
- Others:
- Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Instituto de Matemática e Estatística (IME) ; Universidade de São Paulo = University of São Paulo (USP)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
An orientation of a graph G is a digraph D obtained from G by replacing each edge by exactly one of the two possible arcs with the same endvertices. We then prove that deciding whether − → χ (G) ≤ ∆(G) − 1 is an NP-complete problem. We also show that it is NP-complete to decide whether − → χ (G) ≤ 2, for planar subcubic graphs G. Moreover, we prove that it is NP-complete to decide whether − → χ (G) ≤ 3, for planar bipartite graphs G with maximum degree 5.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01076904
- URN
- urn:oai:HAL:hal-01076904v1
- Origin repository
- UNICA