Published September 26, 2020
| Version v1
Conference paper
SemI2I: Semantically Consistent Image-to-Image Translation for Domain Adaptation of Remote Sensing Data
- Others:
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Spatio-Temporal Activity Recognition Systems (STARS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Although convolutional neural networks have been proven to be an effective tool to generate high quality maps from remote sensing images, their performance significantly deteriorates when there exists a large domain shift between training and test data. To address this issue, we propose a new data augmentation approach that transfers the style of test data to training data using generative adversarial networks. Our semantic segmentation framework consists in first training a U-net from the real training data and then fine-tuning it on the test stylized fake training data generated by the proposed approach. Our experimental results prove that our framework outperforms the existing domain adaptation methods.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02487142
- URN
- urn:oai:HAL:hal-02487142v1
- Origin repository
- UNICA