On the variety parameterizing completely decomposable polynomials
- Creators
- Arrondo, Enrique
- Bernardi, Alessandra
- Others:
- Departamento de Álgebra [Madrid] ; Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
The purpose of this paper is to relate the variety parameterizing completely decomposable homogeneous polynomials of degree $d$ in $n+1$ variables on an algebraically closed field, called $\Split_{d}(\PP n)$, with the Grassmannian of $n-1$ dimensional projective subspaces of $\PP {n+d-1}$. We compute the dimension of some secant varieties to $\Split_{d}(\PP n)$ and find a counterexample to a conjecture that wanted its dimension related to the one of the secant variety to $\GG (n-1, n+d-1)$. Moreover by using an invariant embedding of the Veronse variety into the Plücker space, we are able to compute the intersection of $\GG (n-1, n+d-1)$ with $\Split_{d}(\PP n)$, some of its secant variety, the tangential variety and the second osculating space to the Veronese variety.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00645963
- URN
- urn:oai:HAL:hal-00645963v1
- Origin repository
- UNICA