Published July 15, 2016 | Version v1
Publication

Improving a multi-objective evolutionary algorithm to discover quantitative association rules

Description

This work aims at correcting flaws existing in multi-objective evolutionary schemes to discover quantitative association rules, specifically those based on the wellknown non-dominated sorting genetic algorithm-II (NSGA-II). In particular, a methodology is proposed to find the most suitable configurations based on the set of objectives to optimize and distance measures to rank the non-dominated solutions. First, several quality measures are analyzed to select the best set of them to be optimized. Furthermore, different strate-gies are applied to replace the crowding distance used by NSGA-II to sort the solutions for each Pareto-front since such distance is not suitable for handling many-objective problems. The proposed enhancements have been integrated into the multi-objective algorithm called MOQAR. Several experiments have been carried out to assess the algorithm's performance by using different configuration settings, and the best ones have been compared to other existing algorithms. The results obtained show a remarkable performance of MOQAR in terms of quality measures.

Abstract

Ministerio de Ciencia y Tecnología TIN2011-28956-C02

Abstract

Ministerio de Ciencia y Tecnología TIN2014- 55894-C2-R

Abstract

Junta de Andalucia P12-TIC-1728

Abstract

Universidad Pablo de Olavide APPB813097

Additional details

Created:
March 27, 2023
Modified:
November 30, 2023