Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from Valhall. Part 2: imaging compressive-wave and shear-wave velocities,
- Creators
- Prieux, V.
- Operto, S.
- Virieux, J.
- Brossier, R.
- Others:
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Institut des Sciences de la Terre (ISTerre) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Description
Multiparameter elastic full waveform inversion (FWI) is a promising technology that allows inferences to be made on rock and fluid properties, which thus narrows the gap between seismic imaging and reservoir characterization. Here, we assess the feasibility of 2-D vertical transverse isotropic visco-elastic FWI of wide-aperture multicomponent ocean-bottom-cable data from the Valhall oil field. A key issue is to design a suitable hierarchical data-driven and model-driven FWI workflow, the aim of which is to reduce the nonlinearity of the FWI. This nonlinearity partly arises because the shear (S) wavespeed can have a limited influence on seismic data in marine environments. In a preliminary stage, visco-acoustic FWI of the hydrophone component is performed to build a compressional (P)-wave velocity model, a density model and a quality-factor model, which provide the necessary background models for the subsequent elastic inversion. During the elastic FWI, the P and S wavespeeds are jointly updated in two steps. First, the hydrophone data are inverted to mainly update the long-to-intermediate wavelengths of the S wavespeeds from the amplitude-versus-offset variations of the P-P reflections. This S-wave velocity model is used as an improved starting model for the subsequent inversion of the better-resolving data recorded by the geophones. During these two steps, the P-wave velocity model is marginally updated, which supports the relevance of the visco-acoustic FWI results. Through seismic modelling, we show that the resulting visco-elastic model allows several P-to-S converted phases recorded on the horizontal-geophone component to be matched. Several elastic quantities, such as the Poisson ratio, and the ratio and product between the P and S wavespeeds, are inferred from the P-wave and S-wave velocity models. These attributes provide hints for the interpretation of an accumulation of gas below lithological barriers.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01052778
- URN
- urn:oai:HAL:hal-01052778v1
- Origin repository
- UNICA